Extended cubic B-splines in the numerical solution of time fractional telegraph equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of second-order hyperbolic telegraph equation via new cubic trigonometric B-splines approach

This paper presents a new approach and methodology to solve the second-order one-dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions using the cubic trigonometric B-spline collocation method. The usual finite difference scheme is used to discretize the time derivative. The cubic trigonometric B-spline basis functions are utilized as an interpolating function...

متن کامل

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

متن کامل

Numerical Solution of Fractional Telegraph Equation via the Tau Method

This paper presents a computational technique based on the Tau method and Legendre polynomials for the solution of a class of time-fractional telegraph equations. An appropriate representation of the solution via the Legendre operational matrix of fractional derivative is used to reduces its numerical treatment to the solution of a set of linear algebraic equations. The fractional derivatives a...

متن کامل

Analytical Solution for the Time-Fractional Telegraph Equation

We discuss and derive the analytical solution for three basic problems of the so-called timefractional telegraph equation. The Cauchy and Signaling problems are solved by means of juxtaposition of transforms of the Laplace and Fourier transforms in variable t and x, respectively. the appropriate structures and negative prosperities for their Green functions are provided. The boundary problem in...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2019

ISSN: 1687-1847

DOI: 10.1186/s13662-019-2296-9